miRNAomics analysis reveals the promoting effects of cigarette smoke extract-treated Beas-2B-derived exosomes on macrophage polarization.

2021 
Inhalation of cigarette smoke induces airway and parenchyma inflammation that predisposes smokers to multiple lung diseases such as COPD. Macrophage polarization, an important specifying feature of inflammation, is involved in the progression of pulmonary inflammation. Exosomes and their loaded miRNAs provide a medium for cross-talk between alveolar macrophages and lung epithelial cells to maintain lung homeostasis. In this study, we treated Beas-2B with CSE to speculate the effects of Beas-2B-derived exosomes on macrophage polarization and performed exosomal miRNAomics analysis to explore the mechanism. We found that CSE-treated Beas-2B-derived exosomes could not only increase the percentages of CD86+, CD80+ CD163+, and CD206+ cells but also induce the secretion of TNF-α, IL-6, iNOS, IL-10, Arg-1, and TGF-β, indicating both M1 and M2 polarization of RAW264.7 macrophages were promoting. We performed miRNAomics analysis to identify 27 differentially expressed exosomal miRNAs such as miR-29a-3p and miR-1307-5p. Next, we obtained 14942 target genes of these miRNAs such as SCN1A and PLEKHA1 through the prediction of TargetScan and miRanda. We utilized KEGG enrichment analysis for these targets to identify potential pathways such as the PI3K-Akt signaling pathway and the MAPK signaling pathway on the regulation of macrophage polarization. We further found that miR-21-3p or miR-27b-3p may play critical roles in the promotion of CSE-Exo on macrophage polarization by miRNA interference. Collectively, this study provided novel information for diagnostic and therapeutic tactics of cigarette smoke-related lung diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []