Prevention of Axonal Injury using Calpain Inhibitor in Chronic Progressive Experimental Autoimmune Encephalomyelitis

2008 
Abstract Axonal injury is the major correlate of permanent disability in neurodegenerative diseases such as multiple sclerosis (MS), especially in secondary-progressive MS which follows relapsing–remitting disease course. Proteolytic enzyme, calpain, is a potential candidate for causing axonal injury. Most current treatment options only target the inflammatory component of MS. Previous work using calpain inhibitor CYLA in our laboratory showed significant reduction in clinical sign, demyelination and tissue calpain content in acute experimental autoimmune encephalomyelitis (EAE). Here we evaluated markers of axonal injury (amyloid precursor protein, Na v 1.6 channels), neuronal calpain content and the effect of CYLA on axonal protection using histological methods in chronic EAE [myelin oligodendrocyte glycoprotein (MOG)-induced disease model of MS]. Intraperitoneal application of CYLA (2 mg/mouse/day) significantly reduced the clinical signs, tissue calpain content, demyelination and inflammatory infiltration of EAE. Similarly, markers for axonal injury were barely detectable in the treated mice. Thus, this novel drug, which markedly suppresses the disease course, axonal injury and its progression, is a candidate for the treatment of a neurodegenerative disease such as multiple sclerosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    39
    Citations
    NaN
    KQI
    []