Quartz Crystal Microbalance as Cell‐Based Biosensor to Detect and Study Cytoskeletal Alterations and Dynamics

2018 
Several techniques can be used to monitor cell dynamism after a perturbation. Among these, Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) offers the great advantage to study the mechanical properties of cells in real-time and with a great sensitivity. Here, we used QCM-D to investigate the effects of two cytoskeleton-targeting agents, cytochalasin D (CytoD) and Y27632, on human MCF-7 cells. Cell adhesion on the sensor surface, crucial for in-flow experiments, was obtained by covalent adsorption of a fibronectin (FN) film, an extracellular matrix (ECM) protein. Direct analysis of MCF-7 cells on FN-coated sensor, shows a specific cellular response that was revealed and quantified by QCM-D after drugs exposure. Notably, upon treatment with Y27632, we observed a two-regime dissipation behavior that we associated with specific modifications of actin filaments and signaling proteins providing a link between biophysical and molecular mechanisms. Overall, this approach opens new opportunities for studying cellular response to mechanical cues in different biological conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []