Pairing of Massive Black Holes in Merger Galaxies Driven by Dynamical Friction

2020 
Motivated by observational searches for massive black hole (MBH) pairs at kiloparsec separations we develop a semi-analytic model to describe their orbital evolution under the influence of stellar and gaseous dynamical friction (DF). The goal of this study is to determine how the properties of the merger remnant galaxy and the MBHs affect the likelihood and timescale for formation of a close MBH pair with separation of 10^6 solar mass and mass ratios > 1/4. Among these, the remnant galaxies characterized by the fastest formation of close, gravitationally bound MBHs have one or more of the following properties: (1) large stellar bulge, (2) comparable mass MBHs and (3) a galactic gas disk rotating close to the circular speed. In such galaxies, the MBHs with the shortest inspiral times, which are likely progenitors of coalescing MBHs, are either on circular prograde orbits or on very eccentric retrograde orbits. Our model also indicates that remnant galaxies with opposite properties, that host slowly evolving MBH pairs, are the most likely hosts of dual AGNs at kiloparsec separations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    5
    Citations
    NaN
    KQI
    []