3D Automated Segmentation of Lower Leg Muscles Using Machine Learning on a Heterogeneous Dataset

2021 
Quantitative MRI combines non-invasive imaging techniques to reveal alterations in muscle pathophysiology. Creating muscle-specific labels manually is time consuming and requires an experienced examiner. Semi-automatic and fully automatic methods reduce segmentation time significantly. Current machine learning solutions are commonly trained on data from healthy subjects using homogeneous databases with the same image contrast. While yielding high Dice scores (DS), those solutions are not applicable to different image contrasts and acquisitions. Therefore, the aim of our study was to evaluate the feasibility of automatic segmentation of a heterogeneous database. To create a heterogeneous dataset, we pooled lower leg muscle images from different studies with different contrasts and fields-of-view, containing healthy controls and diagnosed patients with various neuromuscular diseases. A second homogenous database with uniform contrasts was created as a subset of the first database. We trained three 3D-convolutional neuronal networks (CNN) on those databases to test performance as compared to manual segmentation. All networks, training on heterogeneous data, were able to predict seven muscles with a minimum average DS of 0.75. U-Net performed best when trained on the heterogeneous dataset (DS: 0.80 ± 0.10, AHD: 0.39 ± 0.35). ResNet and DenseNet yielded higher DS, when trained on a heterogeneous dataset (both DS: 0.86), as compared to a homogeneous dataset (ResNet DS: 0.83, DenseNet DS: 0.76). In conclusion, a CNN trained on a heterogeneous dataset achieves more accurate labels for predicting a heterogeneous database of lower leg muscles than a CNN trained on a homogenous dataset. We propose that a large heterogeneous database is needed, to make automated segmentation feasible for different kinds of image acquisitions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []