A Novel Susceptibility Locus on Rat Chromosome 8 Affects Spontaneous but Not Experimentally Induced Type 1 Diabetes

2007 
OBJECTIVE—The biobreeding diabetes-prone (BBDP) rat spontaneously develops type 1 diabetes. Two of the genetic factors contributing to this syndrome are the major histocompatibility complex (Iddm1) and a Gimap5 mutation (Iddm2) responsible for a T-lymphopenia. Susceptibility to experimentally induced type 1 diabetes is widespread among nonlymphopenic (wild-type Iddm2) rat strains provided they share the BBDP Iddm1 allele. The question follows as to whether spontaneous and experimentally induced type 1 diabetes share susceptibility loci besides Iddm1. Our objectives were to map a novel, serendipitously discovered Iddm locus, confirm its effects by developing congenic sublines, and assess its differential contribution to spontaneous and experimentally induced type 1 diabetes. RESEARCH DESIGN AND METHODS—An unexpected reduction in spontaneous type 1 diabetes incidence (86 to 31%, P RT7 (chromosome 13). Genome-wide analysis revealed that, besides the RT7 locus, a Wistar Furth chromosome 8 fragment had also been introduced. The contribution of these intervals to diabetes resistance was assessed through linkage analysis using 134 F2 (BBDP × double congenic line) animals and a panel of congenic sublines. One of these sublines, resistant to spontaneous type 1 diabetes, was tested for susceptibility to experimentally induced type 1 diabetes. RESULTS—Both linkage analysis and congenic sublines mapped a novel locus (Iddm24) to the telomeric 10.34 Mb of chromosome 8, influencing cumulative incidence and age of onset of spontaneous type 1 diabetes but not insulitis nor experimentally induced type 1 diabetes. CONCLUSIONS—This study has identified a type 1 diabetes susceptibility locus that appears to act after the development of insulitis and that regulates spontaneous type 1 diabetes exclusively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    11
    Citations
    NaN
    KQI
    []