Comparison Classifier: Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN) In Digital Mammogram Images

2017 
In order to begin the initial check on breast cancer, radiologist can use Computer Aided Diagnosis (CAD) as another option to detect breast cancer. During breast cancer check, human error is often to affecting the result. Several research before have proved that CAD is able to detect breast cancer spot more accurate. The purpose of this research is to find reliable method to classify breast cancer abnormalities. Mammography Image Analysis Society (MIAS) database is used as the sample data to the proposed system in this research. Mammograms are divided into three categorize which are normal, benign and malignant according to MIAS database. Features included in this experiment are extracted by using gray level co-occurrence matrices (GLCM) at 0o, 45o, 90o and 135o with a block size of 128x128. In classification process, this research attempt to compare k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) classifier in order to achieve the better accuracy. The result shows that SVM outperforms KNN in breast cancer abnormalities classification with 93.88% accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    10
    Citations
    NaN
    KQI
    []