Nonexponential Photoluminescence Dynamics in an Inhomogeneous Ensemble of Excitons in WSe2 Monolayers

2020 
The spectral and spatiotemporal dynamics of photoluminescence in monolayers of transition metal dichalcogenide WSe2 obtained by mechanical exfoliation on a Si/SiO2 substrate is studied over a wide range of temperatures and excitation powers. It is shown that the dynamics is nonexponential and, for times t exceeding ∼50 ps after the excitation pulse, is described by a dependence of the form 1/(t + t0). Photoluminescence decay is accelerated with a decrease in the temperature and in the energy of emitting states. It is shown that the observed dynamics cannot be described by a bimolecular recombination process, such as exciton—exciton annihilation. A model that describes the nonexponential photoluminescence dynamics by taking into account the spread of radiative recombination times of localized exciton states in a random potential gives good agreement with experimental data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    3
    Citations
    NaN
    KQI
    []