Steady one-dimensional domain wall motion in biaxial ferromagnets: mapping of the Landau-Lifshitz equation to the sine-Gordon equation

2019 
Motivated by the difference between the dynamics of magnetization textures in ferromagnets and antiferromagnets, the Landau-Lifshitz equation of motion is explored. A typical one-dimensional domain wall in a bulk ferromagnet with biaxial magnetic anisotropy is considered. In the framework of Walker-type of solutions of steady-state ferromagnetic domain wall motion, the reduction of the non-linear Landau-Lifshitz equation to a Lorentz-invariant sine-Gordon equation typical for antiferromagnets is formally possible for velocities lower than a critical velocity of the topological soliton. The velocity dependence of the domain wall energy and the domain wall width are expressed in the relativistic-like form in the limit of large ratio of the easy-plane/easy-axis anisotropy constants. It is shown that the mapping of the Landau-Lifshitz equation of motion to the sine-Gordon equation can be performed only by going beyond the steady-motion Walker-type of solutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    4
    Citations
    NaN
    KQI
    []