Synthesis and Surface Modification of Small Pore Size Zeolite W for Improving Removal Efficiency of Anionic Contaminants from Water.

2020 
The presence of regulated inorganic contaminants in water such as AsO43- and PO43- anions, is becoming a relevant environmental research topic. The harm that these anions cause to human health and the ecosystem have been reported in several works. The adsorption processes using low-cost materials, such as zeolites, have proven to be an option to removal hazardous contaminants from water. The coal fly ash, a waste from thermoelectrical plants, offers a raw pollutant material to synthesis an effective adsorbent (Zeolite W). In this research was studied the removal of arsenic and phosphates anions from water, applying a functionalized by iron and zirconium Zeolite W, which was modified using a fast and efficient process through microwave-assisted method (1 min at 150°C). The obtained Zeolite W did not show significant changes in its structure and morphology. The maximum adsorption capacity (Qm expressed in mg g-1) was found to be 42.31 (Iron-zirconium-zeolite) and 27.82 (Iron-zeolite) for AsO43-, while it reached 50.89 for PO43- using Zirconium-zeolite. Results showed that functionalized zeolites are efficient adsorbents for hazardous anionic species; therefore, it could be useful for aqueous effluents remediation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    6
    Citations
    NaN
    KQI
    []