Synthesis and Surface Modification of Small Pore Size Zeolite W for Improving Removal Efficiency of Anionic Contaminants from Water.
2020
The presence of regulated inorganic contaminants in water such as AsO43- and PO43- anions, is becoming a relevant environmental research topic. The harm that these anions cause to human health and the ecosystem have been reported in several works. The adsorption processes using low-cost materials, such as zeolites, have proven to be an option to removal hazardous contaminants from water. The coal fly ash, a waste from thermoelectrical plants, offers a raw pollutant material to synthesis an effective adsorbent (Zeolite W). In this research was studied the removal of arsenic and phosphates anions from water, applying a functionalized by iron and zirconium Zeolite W, which was modified using a fast and efficient process through microwave-assisted method (1 min at 150°C). The obtained Zeolite W did not show significant changes in its structure and morphology. The maximum adsorption capacity (Qm expressed in mg g-1) was found to be 42.31 (Iron-zirconium-zeolite) and 27.82 (Iron-zeolite) for AsO43-, while it reached 50.89 for PO43- using Zirconium-zeolite. Results showed that functionalized zeolites are efficient adsorbents for hazardous anionic species; therefore, it could be useful for aqueous effluents remediation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
6
Citations
NaN
KQI