Multi-frequency Shubnikov-de Haas oscillations in topological semimetal Pt$_2$HgSe$_3$.

2020 
Monolayer jacutingaite (Pt$_2$HgSe$_3$) has been recently identified as a candidate quantum spin Hall system with a 0.5 eV band gap, but no transport measurements have been performed so far on this material, neither in monolayer nor in the bulk. By using a dedicated high-pressure technique, we grow crystals enabling the exfoliation of 50-100 nm thick layers and the realization of devices for controlled transport experiments. Magnetoresistance measurements indicate that jacutingaite is a semimetal, exhibiting Shubnikov-de Haas (SdH) resistance oscillations with a multi-frequency spectrum. We adapt the Lifshitz-Kosevich formula to analyze quantitatively the SdH resistance oscillations in the presence of multiple frequencies, and find that the experimental observations are overall reproduced well by band structure ab-initio calculations for bulk jacutingaite. Together with the relatively high electron mobility extracted from the experiments ($\approx 2000$ cm$^2$/Vs, comparable to what is observed in WTe$_2$ crystals of the same thickness), our results indicate that monolayer jacutingaite should provide an excellent platform to investigate transport in 2D quantum spin Hall systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []