Synthesis and Pyrolysis of Fullerenol-stabilized Pt Nanocolloids as a unique Approach to Pt-doped Carbon.

2021 
An aqueous colloidal dispersion of Pt nanoparticles (NPs) stabilized by fullerenol C60 (OH)12 (Pt:C60 (OH)12 ) was successfully synthesized via liquid-phase chemical reduction. The subsequent pyrolysis of Pt:C60 (OH)12 at different temperatures was conducted to afford Pt-doped carbon with different chemical compositions (Pt:C60n ). X-ray absorption spectroscopy (XAS) and Infrared (IR) absorption spectroscopy and thermogravimetric measurements revealed that the thus-prepared nanocomposite consists of Pt NPs and high valent Pt-C60 (OH)12 complex. One distinct feature of C60 (OH)12 matrix as catalyst support is the suppression of size growth of Pt NPs during the pyrolysis up to 300 °C. Electrochemical experiments using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were performed to find that Pt:C60300 (pyrolyzed at 300 °C) exhibited higher activity than others, that was attributed to the π-extended feature of the as-obtained carbon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []