Isoexergonic Conformations of Surface-Bound Citrate Regulated Bioinspired Apatite Nanocrystal Growth

2016 
The superior biomechanical properties of bone and dentin are dictated, in part, by the unique plate-like morphology of hydroxyapatite (HAP) nanocrysals within a hierarchically assembled collagen matrix. Understanding the mechanism of crystal growth and thus morphology is important to the rational design of bioinspired apatite nanocrystals for orthopedic and dental applications. Citrate has long been proposed to modulate apatite crystal growth, but major questions exist regarding the HAP-bound citrate conformations and the identities of the interacting functional groups and HAP surface sites. Here, we conducted a comprehensive investigation of the mechanism from the angstrom to submicrometer scale by detailed correlation of the results of high-level metadynamics simulations, employing force-fields benchmarked to experiment and density functional theory calculations with the results of high resolution transmission electron microscopy, nuclear magnetic resonance spectroscopy, solution analysis, and thermogra...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    13
    Citations
    NaN
    KQI
    []