Tissue morphogenesis mediated by the Arabidopsis receptor kinase STRUBBELIG involves a clathrin-dependent process

2018 
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis relies on the atypical receptor kinase STRUBBELIG (SUB). Here, we approach the endocytic mechanism of SUB. Our data reveal that a functional SUB:EGFP fusion is ubiquitinated in vivo. We further show that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also find that SUB:EGFP associates with the trans- Golgi network and accumulates in multivesicular bodies and the vacuole. Co- immunoprecipitation experiments reveal that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis shows that SUB and CLATHRIN HEAVY CHAIN 2 promote root hair patterning. By contrast, SUB behaves as a negative regulator of a clathrin-dependent process during floral development. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not dependent on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue- specific manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    0
    Citations
    NaN
    KQI
    []