Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

2019 
We present results from a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the $\mathcal{J}$-statistic, and by analysing data from Advanced LIGO's second observing run. In the frequency range searched, from $60$ to $650\,\mathrm{Hz}$, we find no evidence of gravitational radiation. At $194.6\,\mathrm{Hz}$, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95\% confidence) of $h_0^{95\%} = 3.47 \times 10^{-25}$ when marginalising over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    39
    Citations
    NaN
    KQI
    []