Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles

2010 
Abstract Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (∼3.5 nm) are uniformly dispersed on supports. Pt/GSP exhibits the highest activity towards oxygen-reduction reactions. The durability study indicates that Pt/GSP is 2–3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    43
    Citations
    NaN
    KQI
    []