Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

2016 
Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2–CO mixture) are two main reaction processes within porous anode material of SOFC. Here ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    4
    Citations
    NaN
    KQI
    []