Heat hypersensitivity of ryanodine receptor type 1 mutants implicated in malignant hyperthermia

2020 
Cellular heat-sensing is a universal strategy for avoiding thermal damage and adapting to environments by regulating thermogenic activities. If heat-sensing results in the acceleration of processes governing cellular thermogenesis, hyperthermia can occur. However, how this positive feedback loop contributes to hyperthermia development, especially the gap between heat-sensing and thermogenesis, remains largely unknown. Here, we show that an optically controlled local heat pulse induces an intracellular Ca2+ burst in cultured HEK 293 cells overexpressing ryanodine-receptor-type-1 (RyR1) mutants related to the life-threatening illness malignant hyperthermia (MH), and that the Ca2+ burst originates from heat-induced Ca2+-release (HICR) because of the mutant channels9 heat hypersensitivity. Furthermore, the heat hypersensitivity of the four RyR1 mutants was ranked, highlighting the complexity of MH. Our findings reveal the novel cellular heat-sensing mechanism, HICR, is essential for the functional positive feedback loop causing MH, suggesting a well-tuned HICR is fundamental for heat-mediated intracellular signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    0
    Citations
    NaN
    KQI
    []