Overland Flow along Stone Covered Slope Land Simulated with Semi-Analytical and Numerical Models

2019 
Overland flow is an important hydrological response of catchments to rainstorms and contributes to soil erosion and nutrient loss. The kinematic wave model is known to describe the transformation of rainfall to overland flow. Through this, field studies were conducted on a hillslope to simulate water scouring from upstream with a complex surface condition, which was covered with different sizes and percentages of stones. Existing semi-analytical and numerical models were adopted to describe the overland flow in the field. Results indicate that both semi-analytical and numerical models could be applied to describe the process of overland flow. Furthermore, predicted outflow rates by the semi-analytical and the numerical model showed strong correlation with the field measured outflow rates, respectively (NS = (0.926, 0.942, 0.992), RE = (5.5%, 4.7%, 1.7%) for the semi-analytical model, and NS = (0.817, 0.952, 0.992), RE = (5.5%, 5.5%, 2.1%) for the numerical model). Besides, hydraulic parameters (Reynolds number-Re, Froude numbers-Fr, Darcy-Weisbach-f, hydraulic shear stress-τ, stream power-ω, water wave celerity-vw) at any time and distance could be described by the semi-analytical method, and the parameter n/h (an important factor indicating the energy of water and wave flow celerity) could successfully characterize the average hydraulic parameters, and all of the hydraulic parameters are fitted to the expression of y = a(n/h)b.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []