A 3D Hierarchical Pancake-Like Porous Carbon Nitride for Highly Enhanced Visible-Light Photocatalytic H2 Evolution

2020 
Polymeric carbon nitride is a fascinating visible-light-response metal-free semiconductor photocatalyst in recent decades. Nevertheless, the photocatalytic H2 efficiency is unsatisfactory due to the insufficient visible-light harvesting capacity and low quantum yields caused by the bulky structure seriously limited its applications. To overcome these defects, in this research, a 3D hierarchical pancake-like porous carbon nitride (PPCN) was successfully fabricated by a facile bottom-up method. The as-prepared photocatalyst exhibit enlarged surface area, enriched reactive sites, improved charge carrier transformation and separation efficiency, and expanded bandgap with a more negative conduction band towardan enhanced reduction ability. All these features synergistically enhanced the photocatalytic H2 evolution efficiency of 3% Pt@PPCN (430 µmol g−1 h−1) under the visible light illumination (λ ≥ 420 nm), which was nine-fold higher than that of 3% Pt@bulk C3N4 (BCN) (45 µmol g−1 h−1). The improved structure and enhanced photoelectric properties were systematically investigated by different characterization techniques. This research may provide an insightful synthesis strategy for polymeric carbon nitride with excellent light-harvesting capacity and enhanced separation of charges toward remarkable photocatalytic H2 for water splitting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []