Spectroscopic exploration and thermodynamic characterization of desvenlafaxine interacting with fluorescent bovine serum albumin

2017 
The mechanism of the interaction between bovine serum albumin (BSA) and desvenlafaxine was studied using fluorescence, ultraviolet absorption, 3-dimensional fluorescence spectroscopy, circular dichroism, synchronous fluorescence spectroscopy, cyclic voltametry, differential scanning calorimetry, and attenuated total reflection–Fourier transform infrared spectroscopic techniques under physiological condition at pH 7.4. Stern-Volmer calculations authenticate the fluorescence of BSA that was quenched by desvenlafaxine in a collision quenching mode. The fluorescence quenching method was used to evaluate number of binding sites “n” and binding constant KA that were measured, and various thermodynamic parameters were evaluated at different temperatures by using the van't Hoff equation and differential scanning calorimetry technique, which indicated a spontaneous and hydrophobic interaction between BSA and desvenlafaxine. According to the Forster theory we calculate the distance between the donor, BSA and acceptor, desvenlafaxine molecules. Furthermore, circular dichroism and attenuated total reflection–Fourier transform infrared spectroscopy indicate nominal changes in the secondary structure of the protein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    3
    Citations
    NaN
    KQI
    []