Generation of ring-shaped optical vortices in dissipative media by inhomogeneous effective diffusion.

2018 
By means of systematic simulations we demonstrate generation of a variety of ring-shaped optical vortices (OVs) from a two-dimensional input with embedded vorticity, in a dissipative medium modeled by the cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion (spatial-filtering) term, which is anisotropic in the transverse plane and periodically modulated in the longitudinal direction. We show the generation of stable square- and gear-shaped OVs, as well as tilted oval-shaped vortex rings, and string-shaped bound states built of a central fundamental soliton and two vortex satellites, or of three fundamental solitons. Their shape can be adjusted by tuning the strength and modulation period of the inhomogeneous diffusion. Stability domains of the generated OVs are identified by varying the vorticity of the input and parameters of the inhomogeneous diffusion. The results suggest a method to generate new types of ring-shaped OVs with applications to the work with structured light.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []