α-MnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device

2021 
Herein, we report a chemi-resistive sensing method for the detection of formaldehyde (HCHO) gas. For this, α-MnO2 nanowires were synthesized hydrothermally and examined for ascertaining their chemical composition, crystal phase, morphology, purity, and vibrational properties. The XRD pattern confirmed the high crystallinity and purity of the α-MnO2 nanowires. FESEM images confirmed a random orientation and smooth-surfaced wire-shaped morphologies for as-synthesized α-MnO2 nanowires. Further, the synthesized nanowires with rounded tips had a uniform diameter throughout the length of the nanowires. The average diameter of the α-MnO2 nanowires was found to be 62.18 nm and the average length was ~2.0 μm. Further, at an optimized temperature of 300 °C, the fabricated HCHO sensor based on α-MnO2 nanowires demonstrated gas response, response, and recovery times of 19.37, 18, and 30 s, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []