Disentangled Sequential Graph Autoencoder for Preclinical Alzheimer’s Disease Characterizations from ADNI Study

2021 
Given a population longitudinal neuroimaging measurements defined on a brain network, exploiting temporal dependencies within the sequence of data and corresponding latent variables defined on the graph (i.e., network encoding relationships between regions of interest (ROI)) can highly benefit characterizing the brain. Here, it is important to distinguish time-variant (e.g., longitudinal measures) and time-invariant (e.g., gender) components to analyze them individually. For this, we propose an innovative and ground-breaking Disentangled Sequential Graph Autoencoder which leverages the Sequential Variational Autoencoder (SVAE), graph convolution and semi-supervising framework together to learn a latent space composed of time-variant and time-invariant latent variables to characterize disentangled representation of the measurements over the entire ROIs. Incorporating target information in the decoder with a supervised loss let us achieve more effective representation learning towards improved classification. We validate our proposed method on the longitudinal cortical thickness data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our method outperforms baselines with traditional techniques demonstrating benefits for effective longitudinal data representation for predicting labels and longitudinal data generation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []