Disorientation control on trace element segregation in fluid-affected low-angle boundaries in olivine

2021 
The geometry and composition of deformation-related low-angle boundaries in naturally deformed olivine were characterized by electron backscattered diffraction (EBSD) and atom probe tomography (APT). EBSD data show the presence of discrete low-angle tilt boundaries, which formed by subgrain rotation recrystallisation associated with the (100)[001] slip system during fluid-catalysed metamorphism and deformation. APT analyses of these interfaces show the preferential segregation of olivine-derived trace elements (Ca, Al, Ti, P, Mn, Fe, Na and Co) to the low-angle boundaries. Boundaries with  2°), the interfaces become more ordered and linear enrichment of trace elements coincides with the orientation of dislocations inferred from the EBSD data. These boundaries show a systematic increase of trace element concentration with disorientation angle. Olivine-derived trace elements segregated to the low-angle boundaries are interpreted to be captured and travel with dislocations as they migrate to the subgrain boundary interfaces. However, the presence of exotic trace elements Cl and H, also enriched in the low-angle boundaries, likely reflect the contribution of an external fluid source during the fluid-present deformation. The observed compositional segregation of trace elements has significant implications for the deformation and transformation of olivine at mantle depth, the interpretation of geophysical data and the redistribution of elements deep in the Earth. The observation that similar features are widely recognised in manufactured materials, indicates that the segregation of trace elements to mineral interfaces is likely to be widespread.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []