VLT + UVES Spectroscopy of the Low-Ionization Intrinsic Absorber in SDSS J001130.56+005550.7

2003 
We analyse high-resolution VLT+UVES spectra of the low-ionization intrinsic absorber observed in the BAL QSO SDSS J001130.56+005550.7. Two narrow absorption systems at velocities -600 km/s and -22000 km/s are detected. The low-velocity system is part of the broad absorption line (BAL), while the high-velocity one is well detached. While most narrow absorption components are only detected in the high-ionization species, the lowest velocity component is detected in both high- and low-ionization species, including in the excited SiII* and CII* lines. From the analysis of doublet lines, we find that the narrow absorption lines at the low-velocity end of the BAL trough are completely saturated but do not reach zero flux, their profiles being dominated by a velocity-dependent covering factor. The covering factor is significantly smaller for MgII than for SiIV and NV, which demonstrates the intrinsic nature of absorber. From the analysis of the excited SiII* and CII* lines in the lowest velocity component, we find an electron density ~ 1000 cm^{-3}. Assuming photoionization equilibrium, we derive a distance ~ 20 kpc between the low-ionization region and the quasar core. The correspondence in velocity of the high- and low-ionization features suggests that all these species must be closely associated, hence formed at the same distance of ~ 20 kpc, much higher than the distance usually assumed for BAL absorbers.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []