Immunostimulatory TLR7 Agonist‐Nanoparticles Together with Checkpoint Blockade for Effective Cancer Immunotherapy
2020
Mono- or dual-checkpoint inhibitors for immunotherapy have changed the paradigm of cancer care; however, only a minority of patients responds to such treatment. Combining small molecule immuno-stimulators can improve treatment efficacy, but they are restricted by poor pharmacokinetics. In this study, TLR7 agonists conjugated onto silica nanoparticles showed extended drug localization after intratumoral injection. The nanoparticle-based TLR7 agonist increased immune stimulation by activating the TLR7 signaling pathway. When treating CT26 colon cancer, nanoparticle conjugated TLR7 agonists increased T cell infiltration into the tumors by > 4× and upregulated expression of the interferon γ gene compared to its unconjugated counterpart by ~2×. Toxicity assays established that the conjugated TLR7 agonist is a safe agent at the effective dose. When combined with checkpoint inhibitors that target programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), a 10-100× increase in immune cell migration was observed; furthermore, 100 mm3 tumors were treated and a 60% remission rate was observed including remission at contralateral non-injected tumors. The data show that nanoparticle based TLR7 agonists are safe and can potentiate the effectiveness of checkpoint inhibitors in immunotherapy resistant tumor models and promote a long-term specific memory immune function.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
4
Citations
NaN
KQI