Removable Nonconjugated Polymers To Debundle and DisperseCarbon Nanotubes

2019 
In this study, we explore design rules for block copolymer (BCP)-based dispersants for carbon nanotubes (CNTs). We demonstrate the influence of polymer architecture on the dispersion, debundling, and stability of single-walled CNTs. These polymer dispersants based on pyrene-functionalized BCPs are tailored to perform multiple functions, namely, to (a) solubilize CNTs, (b) debundle CNTs, and (c) lift off CNTs following processing. BCPs were synthesized through an efficient ring-opening reaction of a poly 2-vinyl-4,4-dimethylazlactone (PVDMA) block. This chemistry provides greater flexibility to alter the polymer architecture, solubility, and degradability as well as to achieve a higher degree of incorporation of pyrene side groups. UV–vis–NIR absorption and photoluminescence emission studies indicate that a block-brush architecture consisting of polystyrene (PS) as the first block and mixed side chains of pyrene/PS or pyrene/polymethylmethacrylate grafted to the second PVDMA block gave the most stable CNT ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    7
    Citations
    NaN
    KQI
    []