Cloud-Enabled High-Altitude Platform Systems: Challenges and Opportunities

2021 
Augmenting ground-level communications with flying networks, such as the high-altitude platform system (HAPS), is among the major innovative initiatives of the next generation of wireless systems (6G). Given HAPS quasi-static positioning at the stratosphere, HAPS-to-ground and HAPS-to-air connectivity frameworks are expected to be prolific in terms of data acquisition and computing, especially given the mild weather and quasi-constant wind speed characteristics of the stratospheric layer. This paper explores the opportunities stemming from the realization of cloud-enabled HAPS in the context of telecommunications applications and services. The paper first advocates for the potential physical advantages of deploying HAPS as flying data-centers, also known as super-macro base stations. The paper then presents the merits that can be achieved by integrating various cloud services within the HAPS, and the corresponding cloud-type applications that would utilize the HAPS for enhancing the quality, range, and types of offered services. The paper further sheds light on the challenges that need to be addressed for realizing practical cloud-enabled HAPS, mainly, those related to the high energy, processing power, quality of service (QoS), and security considerations. Finally, the paper discusses some open issues on the topic, namely, HAPS mobility and message routing, HAPS security via blockchain and machine learning, artificial intelligence-based resource allocation in cloud-enabled HAPS, and integration with vertical heterogeneous networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    1
    Citations
    NaN
    KQI
    []