Oxygen isotopes suggest elevated thermometabolism within multiple permo-triassic therapsid clades

2017 
School textbooks often refer to “cold-blooded” and “warm-blooded” animals, but these terms are misleading. Rather than being cold, animals like reptiles have body temperatures that are mostly determined by their external environment and can actually achieve high body temperatures, for example, by basking in the sun. By contrast, “warm-bloodedmammals produce their own heat and typically maintain a body temperature that is warmer than their environment. As such, so-called warm-blooded animals are more accurately referred to as “endotherms” and cold-blooded animals as “ectotherms”. Endothermic animals share several characteristics, including insulating layers – like fur or feathers – that keep the body warm, and a secondary palate that separates the mouth and nose for continuous breathing, even while eating. Many of these traits are seen in fossils belonging to a group of animals called the therapsids. Also known as the “mammal-like reptiles”, these animals are descended from ectothermic reptiles but are the ancestors of the endothermic mammals. They dominated the land between 270 and 220 million years ago, during periods of time called the Permian and the Triassic. They also survived two major mass extinction events, including the most devastating mass extinction in all of Earth’s history. However, when the ancestors of mammals became truly endothermic remains an open question. Previous studies that have tried to determine this by focusing on the physical characteristics of therapsids have not yet given a consistent date. Rey et al. took a new approach to answer when endothermy first evolved in the mammal-like reptiles, and instead looked at the chemical makeup of minerals in over 100 fossils. Oxygen can exist in different forms called stable isotopes: oxygen-16 and the rarer and heavier oxygen-18. The ratio of these two isotopes in a fossil will depend on, among other things, where the animal lived and, importantly, its body temperature. Therefore, Rey et al. compared oxygen-containing minerals in the bones and teeth of therapsids to those of other animals that lived alongside them to look for signatures that indicated differences in body temperature and how it was regulated. It appears that two different branches of the therapsid’s family tree independently became endothermic. One branch includes the mammals and their direct ancestors, while the second is more distantly related to mammals. Both became endothermic towards the end of the Permian Period, between about 259 and 252 million years ago. Based on these findings, Rey et al. suggest that endothermy allowed these animals to better cope with fluctuating climates, which helped them to be among the few species that survived the mass extinction event at the end of the Permian. Going forward, these new findings can help scientists to understand which physical characteristics were necessary for endothermy to first develop and which helped to optimize it afterwards. Furthermore, they also suggest that endothermic animals are more able to survive fluctuations in climate, which could guide efforts to protect modern-day endangered species that are most at risk from the ongoing effects of climate change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    118
    References
    24
    Citations
    NaN
    KQI
    []