Using Discrete-Event Simulation to Promote Quality Improvement and Efficiency in a Radiation Oncology Treatment Center

2017 
BACKGROUND: To meet demand for radiation oncology services and ensure patient-centered safe care, management in an academic radiation oncology department initiated quality improvement efforts using discrete-event simulation (DES). Although the long-term goal was testing and deploying solutions, the primary aim at the outset was characterizing and validating a computer simulation model of existing operations to identify targets for improvement. METHODS: The adoption and validation of a DES model of processes and procedures affecting patient flow and satisfaction, employee experience, and efficiency were undertaken in 2012-2013. Multiple sources were tapped for data, including direct observation, equipment logs, timekeeping, and electronic health records. RESULTS: During their treatment visits, patients averaged 50.4 minutes in the treatment center, of which 38% was spent in the treatment room. Patients with appointments between 10 AM and 2 PM experienced the longest delays before entering the treatment room, and those in the clinic in the day's first and last hours, the shortest (<5 minutes). Despite staffed for 14.5 hours daily, the clinic registered only 20% of patients after 2:30 PM. Utilization of equipment averaged 58%, and utilization of staff, 56%. CONCLUSION: The DES modeling quantified operations, identifying evidence-based targets for next-phase remediation and providing data to justify initiatives.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    2
    Citations
    NaN
    KQI
    []