Remodelingof a Cell-Free Vascular Graft with NanolamellarIntima into a Neovessel

2019 
Advances in cardiovascular materials have brought us the improved artificial vessels with larger diameters for reducing adverse responses that drive acute thrombosis and the associated complications. Nonetheless, the challenge is still considerable when applying these materials in small-diameter blood vessels. Here we report the biomimetic design of an acellular small-diameter vascular graft with specifically lamellar nanotopography on the luminal surface via a modified freeze-cast technique. The experimental findings verify that the well-designed nanolamellar structure is able to inhibit the adherence and activation of platelets, induce oriented growth of endothelial cells, and eventually remodel a neovessel to maintain long-term patency in vivo. Furthermore, the results of numerical simulations in physically mimetic conditions reveal that the regularly lamellar nanopattern can manipulate blood flow to reduce the flow disturbance compared with the random topography. Our current work not only creates a fr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    15
    Citations
    NaN
    KQI
    []