Caerulomycin A Enhances Transforming Growth Factor-β (TGF-β)-Smad3 Protein Signaling by Suppressing Interferon-γ (IFN-γ)-Signal Transducer and Activator of Transcription 1 (STAT1) Protein Signaling to Expand Regulatory T Cells (Tregs)

2014 
Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    21
    Citations
    NaN
    KQI
    []