Effect of Partition of Photo-initiator Components and Addition of Iodonium Salt on the Photopolymerization of Phase-Separated Dental Adhesive.
2016
The polymerization kinetics of physically separated hydrophobic- and hydrophilic-rich phases of a model dental adhesive have been investigated. The two phases were prepared from neat resin containing 2-hydroxyethyl methacrylate and bisphenol A glycerolate dimethacrylate (BisGMA) in the ratio of 45:55 (wt./wt.). Neat resins containing various combinations of popular photo-initiating compounds, e.g., camphoquinone (CQ), ethyl 4-(dimethylamino)benzoate (EDMAB), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and diphenyliodonium hexafluorophosphate (DPIHP), were prepared. To obtain the two phases, 33 wt.% of deuterium oxide (D2O) was added to the neat resins. This amount of D2O exceeded the miscibility limit for the resins. The concentration of each component of the photo-initiating system in the two phases was quantified by high-performance liquid chromatography (HPLC). When combined with CQ, DMAEMA is less efficient as a co-initiator compared to EDMAB. The addition of DPIHP as the third component into either CQ/EDMAB or CQ/DMAEMA photo-initiating systems led to comparable performance in both the hydrophobic- and hydrophilic-rich phases. The addition of the iodonium salt significantly improved the photopolymerization of the hydrophilic-rich phase; the latter exhibited extremely poor polymerization when the iodonium salt was not included in the formulation. The partition concentration of EDMAB in the hydrophilic-rich phase was significantly lower than that of DMAEMA or DPIHP. This study indicates the need for a combination of hydrophobic/hydrophilic photosensitizer and addition of iodonium salt to improve polymerization within the hydrophilic-rich phase of the dental adhesive.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
6
Citations
NaN
KQI