Intensity discrimination deficits cause habituation changes in middle-aged Caenorhabditis elegans

2013 
Abstract The ability to learn and remember is critical for all animals to survive in the ever-changing environment. As we age, many of our biological faculties decay and of these, decline in learning and memory can be the most distressing. To carefully define age-dependent changes in learning during reproductive age in the nematode Caenorhabditis elegans , we performed a parametric behavioral study of habituation to nonlocalized mechanical stimuli (petri plate taps) over a range of intensities in middle-aged worms. We found that as worms age (from the onset of reproduction to the end of egg laying), response probability habituation increases (at both 10- and 60-second interstimulus intervals) and that these age-related changes were associated with a decrease in the discrimination between stimuli of different intensities. We also used optogenetics to investigate where these age-dependent changes occur. Our data suggest that the changes occur upstream of mechanosensory neuron depolarization. These data support the idea that declines in stimulus intensity discrimination abilities during aging may be one variable underlying age-related cognitive deficits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    29
    Citations
    NaN
    KQI
    []