DNA Sequencing Modified Method through Effective Regulation of Its Translocation Speed in Aqueous Solution

2020 
Solid-state nanopore DNA sequencing modified method is developed. Method is based on the tunnel current investigation through the nanogap made on lateral gold electrodes in the form of nanowires or nanoribbons. The movement of DNA in aqueous solution is regulated by the potential applied to reference electrode. The potential applied to the lateral metal electrodes helps to the creation of the molecular junctions. They consist of the nucleosides passing through the pores. Taking into account that DNA moves under gravity, electrophoretic and drag forces, the analytic expression for the DNA translocation speed is calculated and analyzed. The conditions for decreasing the DNA translocation speed or increasing the nucleosides reading time are received. It is shown that one can control value of the DNA molecules bases reading time and the frequency of the bases passes by the choice of magnitude of the potential applied to reference electrode. Our results, therefore potentially suggest a realistic, inherently design-specific, high-throughput nanopore DNA sequencing device/cell as a de-novo alternative to the existing methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []