Identification of pulmonary nodules via CT images with hierarchical fully convolutional networks
2019
Lung cancer is one of the most diagnosable forms of cancer worldwide. The early diagnoses of pulmonary nodules in computed tomography (CT) chest scans are crucial for potential patients. Recent researches have showed that the methods based on deep learning have made a significant progress for the medical diagnoses. However, the achievements on identification of pulmonary nodules are not yet satisfactory enough to be adopted in clinical practice. It is largely caused by either the existence of many false positives or the heavy time of processing. With the development of fully convolutional networks (FCNs), in this study, we proposed a new method of identifying the pulmonary nodules. The method segments the suspected nodules from their environments and then removes the false positives. Especially, it optimizes the network architecture for the identification of nodules rapidly and accurately. In order to remove the false positives, the suspected nodules are reduced using the 2D models. Furthermore, according to the significant differences between nodules and non-nodules in 3D shapes, the false positives are eliminated by integrating into the 3D models and classified via 3D CNNs. The experiments on 1000 patients indicate that our proposed method achieved 97.78% sensitivity rate for segmentation and 90.1% accuracy rate for detection. The maximum response time was less than 30 s and the average time was about 15 s.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
18
References
8
Citations
NaN
KQI