Study of efficiency-droop mechanism in vertical red light-emitting diodes using electrical-to-optical impulse responses

2012 
The mechanism responsible for the efficiency droop in AlGaInP based vertically-structured red light-emitting diodes (LEDs) is investigated using dynamic measurement techniques. Short electrical pulses (~100ps) are pumped into this device and the output optical pulses probed using high-speed photo-receiver circuits. From this, the internal carrier dynamic inside the device can be investigated by use of the measured electrical-to-optical (E-O) impulse responses. Results show that the E-O responses measured under different bias currents are all invariant from room temperature to ~100°. This is contrary to most results reported for AlGaInP based red LEDs, which usually exhibit a shortening in the response time and degradation in output power with the increase of ambient temperature. According to these measurement results and the extracted fall-time constants of the E-O impulse responses, the origin of the efficiency droop in our vertical LED structure, which has good heat-sinking, is not due to thermally induced carrier leakage, but rather should be attributed to defect recombination and the saturation of spontaneous recombination processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []