Disk-based one-dimensional photonic crystal slabs for label-free immunosensing

2019 
Abstract One-dimensional photonic crystal slabs are periodic optical nanostructures that produce guided-mode resonance. They couple part of the incident light into the waveguide generating bandgaps in the transmittance spectrum, whose position is sensitive to refractive index variations on their surface. In this study, we present one-dimensional photonic crystal slab biosensors based on the internal nanogrooved structure of Blu-ray disks for label-free immunosensing. We demonstrated that this polycarbonate structure coated with a critical thickness of TiO 2 generates guided-mode resonance. Its optical behavior was established comparing it with other compact disk structures. The results were theoretically calculated and experimentally demonstrated, all them being in agreement. The bioanalytical performance of these photonic crystals was experimentally demonstrated in a model assay to quantify IgGs as well as in two immunoassays to determine the biomarkers C-reactive protein and lactate dehydrogenase (detection limits of 0.1, 87, and 13 nM, respectively). The results are promising towards the development of new low-cost, portable, and label-free optical biosensors that join these photonic crystals with dedicated bioanalytical scanners based on compact disk drives.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    20
    Citations
    NaN
    KQI
    []