Cause and consequences of genome duplication in haploid yeast populations

2018 
Whole genome duplications (WGD) represent important evolutionary events that shape future adaptation. WGDs are known to have occurred in the lineages leading to plants, fungi, and vertebrates. Changes to ploidy level impact the rate and spectrum of beneficial mutations and thus the rate of adaptation. Laboratory evolution experiments initiated with haploid Saccharomyces cerevisiae cultures repeatedly experience WGD. We report recurrent genome duplication in 46 haploid yeast populations evolved for 4,000 generations. We find that WGD confers a fitness advantage, and this immediate fitness gain is accompanied by a shift in genomic and phenotypic evolution. The presence of ploidy-enriched targets of selection and structural variants reveals that autodiploids utilize adaptive paths inaccessible to haploids. We find that autodiploids accumulate recessive deleterious mutations, indicating an increased capacity for neutral evolution. Finally, we report that WGD results in a reduced adaptation rate, indicating a trade-off between immediate fitness gains and long term adaptability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    2
    Citations
    NaN
    KQI
    []