A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities

2020 
Biodiversity accumulates hierarchically by means of ecological and evolutionary processes and feedbacks. Reconciling the relative importance of these processes is hindered by current theory, which tends to focus on a single spatial, temporal or taxonomic scale. We introduce a mechanistic model of community assembly, rooted in classic island biogeography theory, which makes temporally explicit joint predictions across three biodiversity data axes: i) species richness and abundances; ii) population genetic diversities; and iii) trait variation in a phylogenetic context. We demonstrate that each data axis captures information at different timescales, and that integrating these axes enables discriminating among previously unidentifiable community assembly models. We combine our massive eco-evolutionary synthesis simulations (MESS) with supervised machine learning to fit the parameters of the model to real data and infer processes underlying how biodiversity accumulates, using communities of tropical trees, arthropods, and gastropods as case studies that span a range of spatial scales.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    4
    Citations
    NaN
    KQI
    []