Next‑generation sequencing analysis reveals that MTH‑3, a novel curcuminoid derivative, suppresses the invasion of MDA‑MB‑231 triple‑negative breast adenocarcinoma cells.

2021 
Triple‑negative breast cancer (TNBC) behaves aggressively in the invasive and metastatic states. Our research group recently developed a novel curcumin derivative, (1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2‑methoxy-4,1‑phenylene)bis(3-hydroxy2-hydroxymethyl)-2‑methyl propanoate (MTH‑3), and previous studies showed that MTH‑3 inhibits TNBC proliferation and induces apoptosis in vitro and in vivo with a superior bioavailability and absorption than curcumin. In the present study, the effects of MTH‑3 on TNBC cell invasion were examined using various assays and gelatin zymography, and western blot analysis. Treatment with MTH‑3 inhibited MDA‑MB‑231 cell invasion and migration, as shown by Transwell assay, 3D spheroid invasion assay, and wound healing assay. The results of the gelatin zymography experiments revealed that MTH‑3 decreased matrix metalloproteinase‑9 activity. The potential signaling pathways were revealed by next‑generation sequencing analysis, antibody microarray analysis and western blot analysis. In conclusion, the results of the present study show that, MTH‑3 inhibited tumor cell invasion through the MAPK/ERK/AKT signaling pathway and cell cycle regulatory cascade, providing significant information about the potential molecular mechanisms of the effects of MTH‑3 on TNBC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []