On Codebook Design to Improve Speaker Adaptation
1996
The purpose of this paper is to propose a method improving the performance of a semi-continuous hidden Markov model(SCHMM) speaker adaptation system which uses Bayesian Parameter reestimation approach. The performance of Bayesian speaker adaptation could be degraded in case that the features of a new speaker are severely different from those of a reference codebook. The excessive codewords of the reference codebook still remain after adaptation proess. which cause confusion in recognition process. To solve such problems, the proposed method uses formant information which is extracted from the cepstral coefficients of the reference codebook and adaptation data. The reference codebook is adapted to represent the formant distribution of a new speaker and it is used for Bayesian speaker adaptation as an initial codebook. The proposed method provides accurate correspondence between reference codebook and adaptation data. It was observed that the excessive codewords were not selected during recognition process. The experimental results showed that the proposed method improved the recognition performance.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI