PCDD/F removal at low temperatures over Vanadium-based catalyst: insight into the superiority of mechanochemical method

2021 
The high toxicity and low volatility of PCDD/Fs prevent detailed study of their catalytic degradation removal characteristics. In this study, 1,2-dichlorobenzene (1,2-DCBz) was initially used as a model to investigate the catalytic characteristics of various vanadium-based catalysts prepared by different methods. Then, the optimized catalyst was used for catalytic degradation of real PCDD/Fs at low temperatures based on a self-made stable source. The VOx/TiO2 catalysts synthesized by the mechanochemical method (VTi-MC2) had a higher 1,2-DCBz removal efficiency (>85%) and stability (> 420 min) at low temperatures (< 200 °C) compared to VTi-SG (sol-gol method) and VTi-WI (wetness impregnation method). The physicochemical properties of catalysts were studied using comprehensive characterization. It was found that the VTi-MC2 has better VOx species distribution and possesses the highest V5+ species and surface adsorbed oxygen content, which are the key factors that contributed to the higher removal efficiency. Accordingly, the mechanochemical method can be used to control the physicochemical properties of catalysts by adjusting the milling parameters. The optimum ball milling time is 2 h and a suitable precursor is NH4VO3 for VOx/TiO2. Moreover, the removal efficiency and catalytic degradation efficiency of PCDD/Fs in gas phase catalyzed by VTi-MC2 were 97% and 50% respectively, within a range of temperatures below 200 °C, which are both higher than those reported research. In general, the mechanochemical strategy employed in this study provides a means for seeking more efficient catalysts used for low-temperature degradation of various trace organic pollutants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []