Generalized Ulam - Hyers stability of a generalized $\Lambda$-Cauchy-Jensen additive functional equation in IFBS and RBS

2021 
This research article provides the generalized Ulam-Hyers stability of a generalized $\Lambda-$ Cauchy-Jensen additive functional equation \begin{align*} \Lambda~ \mathcal{A}\left(\displaystyle{ \frac{\sum\limits_{p=1}^{l} u_p+\sum\limits_{q=1}^{m} v_q+\Lambda~\sum\limits_{r=1}^{n} w_r}{\Lambda}} \right) = \sum\limits_{p=1}^{l} \mathcal{A}\Big(u_p\Big)+\sum\limits_{q=1}^{m} \mathcal{A}\Big(v_q\Big) +\Lambda~\sum\limits_{r=1}^{n} \mathcal{A}\Big(w_r\Big) \end{align*} where $\Lambda, l, m, n >1$ in intuitionistic fuzzy Banach space and random Banach space using classical Hyers method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []