Generalized Ulam - Hyers stability of a generalized $\Lambda$-Cauchy-Jensen additive functional equation in IFBS and RBS
2021
This research article provides the generalized Ulam-Hyers stability of a generalized $\Lambda-$ Cauchy-Jensen additive functional equation \begin{align*} \Lambda~ \mathcal{A}\left(\displaystyle{ \frac{\sum\limits_{p=1}^{l} u_p+\sum\limits_{q=1}^{m} v_q+\Lambda~\sum\limits_{r=1}^{n} w_r}{\Lambda}} \right) = \sum\limits_{p=1}^{l} \mathcal{A}\Big(u_p\Big)+\sum\limits_{q=1}^{m} \mathcal{A}\Big(v_q\Big) +\Lambda~\sum\limits_{r=1}^{n} \mathcal{A}\Big(w_r\Big) \end{align*} where $\Lambda, l, m, n >1$ in intuitionistic fuzzy Banach space and random Banach space using classical Hyers method.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI