Extending Absorption Edge through the Hybrid Resonator-Based Absorber with Wideband and Near-Perfect Absorption in Visible Region.

2020 
Metamaterial absorber with the unexpected capability for harvesting electromagnetic energy has been regarded as a potential route for various applications, including chemical/biological sensing, cloaking and photovoltaic applications. In this study, we presented the simple absorber design made with Al/SiO2/Al sandwich structures through the involvement of hybrid dual-resonators that could allow the wideband light absorption covered from 450 nm to 600 nm with average absorptivity above 95%. Examinations of excited electric field, magnetic field and total magnitude of electric field in three-dimensional space at resonances were performed to clarify the origin of resonant behaviors. In addition, an equivalent inductance–capacitance circuit model was proposed that could qualitatively explore the geometry-dependent absorption characteristics by modulating the constitutive parameters of hybrid resonators. As a result, the designed light absorber might enable to be practically applied for various optical-management and photovoltaic applications, and even offered the tunability for other desired frequency regions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    6
    Citations
    NaN
    KQI
    []