Impact of enhanced recovery after surgery or fast track surgery pathways in minimally invasive radical prostatectomy: a systematic review and meta-analysis

2020 
Background The enhanced recovery after surgery (ERAS) and fast track surgery (FTS) protocols have been applied to a variety of surgeries and have been proven to reduce complications, accelerate rehabilitation, and reduce medical costs. However, the effectiveness of these protocols in minimally invasive radical prostatectomy (miRP) is still unclear. Thus, this study aimed to evaluate the impact of ERAS and FTS protocols in miRP. Methods We searched PubMed, Cochrane Library, Embase, and Web of Science databases to collect randomized and observational studies comparing ERAS/FTS versus conventional care in miRP up to July 1, 2019. After screening for inclusion, data extraction, and quality assessment by two independent reviewers, the meta-analysis was performed with the RevMan 5.3 and STATA 15.1 software. Results were expressed as risk ratio (RR) and weighted mean difference (WMD) with 95% confidence intervals (CIs). Results In total, 11 studies involving 1,207 patients were included. Pooled data showed that ERAS/FTS was associated with a significant reduction in length of stay (LOS) (WMD: -2.41 days, 95% CI: -4.00 to -0.82 days, P=0.003), time to first anus exhaust (WMD: -0.74 days, 95% CI: -1.14 to -0.34 days, P=0.0003), and lower incidence of postoperative complications (RR: 0.70, 95% CI: 0.53 to 0.92, P=0.01). No significant differences were found between groups for operation time, estimated blood loss, postoperative pain, blood transfusion rate, and readmission rate (P>0.01). Conclusions Our meta-analysis suggests that the ERAS/FTS protocol is safe and effective in miRP. However, more extensive, long-term, prospective, multicenter follow-up studies, and randomized controlled trials (RCTs) are required to validate our findings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []