Evolution of fcc Cu clusters and their structure changes in the soft magnetic Fe85.2Si1B9P4Cu0.8 (NANOMET) and FINEMET alloys observed by X-ray absorption fine structure

2015 
It is known that Cu plays an essential role in reducing the grain size of precipitated bcc Fe(Si) nanocrystallites in a nanocrystalline soft-magnetic Fe85.2Si1B9P4Cu0.8 (NANOMET®) alloys like as an Fe73.5Si13.5B9Nb3Cu1 (FINEMET®). However, significant differences are there between two alloys; NANOMET has much higher iron content (∼85%) than FINEMET (73.5%) and the former contains P instead of Nb for the latter. In the present work, the local structure around Cu in FINEMET was measured by X-ray absorption fine structure (XAFS) at 20 K and compared with those of NANOMET during nanocrystallization. Definite differences between NANOMET and FINEMET are found in the way of the evolution of Cu clusters during nanocrystallization. In FINEMET, an fcc structure of Cu is recognized in an as-quenched ribbon indicating existence of a small number of Cu clusters or a very small size of Cu clusters which is stable up to 450 °C, while the fcc Cu clusters are developed rapidly above 450 °C. An fcc structure of the Cu clus...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    22
    Citations
    NaN
    KQI
    []