Dimethylselenide Demethylation Is an Adaptive Response to Selenium Deprivation in the Archaeon Methanococcus voltae

2004 
The archaeon Methanococcus voltae needs selenium for optimal growth. A gene group most likely involved in the demethylation of dimethylselenide was discovered, the expression of which is induced upon selenium deprivation. The operon comprises open reading frames for a corrinoid protein and two putative methyltransferases. It is shown that the addition of dimethylselenide to selenium-depleted growth medium relieves the lack of selenium, as indicated by the repression of a promoter of a transcription unit encoding selenium-free hydrogenases which is normally active only upon selenium deprivation. Knockout mutants of the corrinoid protein or one of the two methyltransferase genes did not show repression of the hydrogenase promoter in the presence of dimethylselenide. The mutation of the other methyltransferase gene had no effect. Growth rates of the two effective mutants were reduced compared to wild-type cells in selenium-limited medium in the presence of dimethylselenide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    6
    Citations
    NaN
    KQI
    []