Power-law behavior of strings scattered from domain-wall and breakdown of their high energy linear relations

2006 
In contrast to the common wisdom, we discover that, instead of the exponential fall-off of the form factors with Regge-pole structure, the high-energy scattering amplitudes of string scattered from Domain-wall behave as power-law with Regge-pole structure. This is to be compared with the well-known power-law form factors without Regge-pole structure of the D-instanton scatterings. This discovery makes Domain-wall scatterings an unique example of a hybrid of string and field theory scatterings. The calculation is done for bosonic string scatterings of arbitrary massive string states from D-24 brane. Moreover, we discover that the usual linear relations of high-energy string scattering amplitudes at each fixed mass level break down for the Domain-wall scatterings. This result gives a strong evidence that the existence of the infinite linear relations, or stringy symmetries, of high-energy string scattering amplitudes is responsible for the softer, exponential fall-off high-energy string scatterings than the power-law field theory scatterings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []